BIN1 Mouse Monoclonal Antibody [Clone ID: 99F]
CN¥ 8,303.00
CN¥ 300.00
CN¥ 1,430.00
CN¥ 2,900.00
CN¥ 6,650.00
CN¥ 4,840.00
CN¥ 9,998.00
CN¥ 4,840.00
Specifications
Product Data | |
Clone Name | 99F |
Applications | IF, IP, WB |
Recommend Dilution | ELISA: 1:5000-1:50000, WB: 1:500-1:1500, IHC: 1:100-1:500, IP: 10-100 uL |
Reactivity | Mouse, Human |
Host | Mouse |
Clonality | Monoclonal |
Immunogen | Anti-BIN1 (MOUSE) Monoclonal Antibody was produced in mouse by repeated immunizations with BIN1 polypeptide followed by hybridoma development. |
Formulation | 0.02 M Potassium Phosphate, 0.15 M Sodium Chloride, pH 7.2 |
Conjugation | Unconjugated |
Storage Condition | Store at -20°C as received. |
Gene Name | bridging integrator 1 |
Database Link | |
Synonyms | AMPH2; AMPHL; SH3P9 |
Note | Bin1 is a conserved member of the BAR family of genes that have been implicated in diverse cellular processes including endocytosis, actin organization, programmed cell death, stress responses, and transcriptional control. The first mammalian BAR protein to be discovered, Amphiphysin I (AmphI), was identified in an immunoscreen for proteins associated with the plasma membranes of synaptic neurons, functions in the control of clathrin-dependent synaptic vesicle endocytosis. The mammalian Bin1 gene was first identified in a two hybrid screen for polypeptides that bind to the N-terminal Myc box 1 (MB1) portion of the c-Myc oncoprotein. Bin1 is similar to AmphI in overall structure, with an N-terminal BAR domain and a C-terminal SH3 domain. However, the Bin1 gene is more complex than the AmphI gene, encoding at least seven different splice variants that differ widely in subcellular localization, tissue distribution, and ascribed functions. Alternate splicing of the Bin1 gene results in ten transcript variants encoding different isoform. Bin1 is expressed ubiquitously in mammalian cells. Certain splice variants of Bin1 are expressed in the neurons, muscle cells or tumor cells and play a role in cancer suppression. Studies in muscle cells suggest that Bin1 expression, structure, and localization are tightly regulated during muscle differentiation and suggested that Bin1 plays a functional role in the differentiation process. Defects in BIN1 are the cause of centronuclear myopathy autosomal recessive; also known as autosomal recessive myotubular myopathy. |
Reference Data |
Documents
Product Manuals |
FAQs |
SDS |
Resources
抗体相关资料 |