Ap2b1 Mouse siRNA Oligo Duplex (Locus ID 71770)

CAT#: SR421394

Ap2b1 (Mouse) - 3 unique 27mer siRNA duplexes - 2 nmol each



Need single siRNA in bulk?
Get a free quote

CNY 4,090.00


货期*
7周

规格
    • 1 kit

Product images

经常一起买 (2)
siTran 2.0 siRNA transfection reagent (0.5ml)
    • 500 ul

CNY 2,190.00


Trilencer-27 Fluorescent-labeled transfection control siRNA duplex - 1 nmol
    • 1 nmol

CNY 1,090.00

Specifications

Product Data
Purity HPLC purified
Quality Control Tested by ESI-MS
Sequences Available with shipment
Stability One year from date of shipment when stored at -20°C.
# of transfections Approximately 330 transfections/2nmol in 24-well plate under optimized conditions (final conc. 10 nM).
Note Single siRNA duplex (10nmol) can be ordered.
Reference Data
RefSeq NM_001035854, NM_027915
Synonyms 1300012O03Rik; AI788979
Components Ap2b1 (Mouse) - 3 unique 27mer siRNA duplexes - 2 nmol each (Locus ID 71770)
Included - SR30004, Trilencer-27 Universal Scrambled Negative Control siRNA Duplex - 2 nmol
Included - SR30005, RNAse free siRNA Duplex Resuspension Buffer - 2 ml
Summary Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. The AP-2 beta subunit acts via its C-terminal appendage domain as a scaffolding platform for endocytic accessory proteins; at least some clathrin-associated sorting proteins (CLASPs) are recognized by their [DE]-X(1,2)-F-X-X-[FL]-X-X-X-R motif. The AP-2 beta subunit binds to clathrin heavy chain, promoting clathrin lattice assembly; clathrin displaces at least some CLASPs from AP2B1 which probably then can be positioned for further coat assembly (By similarity).[UniProtKB/Swiss-Prot Function]
Performance Guranteed OriGene guarantees that at least two of the three Dicer-Substrate duplexes in the kit will provide at least 70% or more knockdown of the target mRNA when used at 10 nM concentration by quantitative RT-PCR when the TYE-563 fluorescent transfection control duplex (cat# SR30002) indicates that >90% of the cells have been transfected and the HPRT positive control (cat# SR30003) provides 90% knockdown efficiency.

For non-conforming siRNA, requests for replacement product must be made within ninety (90) days from the date of delivery of the siRNA kit. To arrange for a free replacement with newly designed duplexes, please contact Technical Services at techsupport@origene.com. Please provide your data indicating the transfection efficiency and measurement of gene expression knockdown compared to the scrambled siRNA control (quantitative RT-PCR data required).
*Delivery time may vary from web posted schedule. Occasional delays may occur due to unforeseen complexities in the preparation of your product. International customers may expect an additional 1-2 weeks in shipping.

Documents

Customer Reviews 
Loading...